Substrate recognition and cleavage-site selection by a single-subunit protein-only RNase P
نویسندگان
چکیده
RNase P is the enzyme that removes 5' extensions from tRNA precursors. With its diversity of enzyme forms-either protein- or RNA-based, ranging from single polypeptides to multi-subunit ribonucleoproteins-the RNase P enzyme family represents a unique model system to compare the evolution of enzymatic mechanisms. Here we present a comprehensive study of substrate recognition and cleavage-site selection by the nuclear single-subunit proteinaceous RNase P PRORP3 from Arabidopsis thaliana. Compared to bacterial RNase P, the best-characterized RNA-based enzyme form, PRORP3 requires a larger part of intact tRNA structure, but little to no determinants at the cleavage site or interactions with the 5' or 3' extensions of the tRNA. The cleavage site depends on the combined dimensions of acceptor stem and T domain, but also requires the leader to be single-stranded. Overall, the single-subunit PRORP appears mechanistically more similar to the complex nuclear ribonucleoprotein enzymes than to the simpler bacterial RNase P. Mechanistic similarity or dissimilarity among different forms of RNase P thus apparently do not necessarily reflect molecular composition or evolutionary relationship.
منابع مشابه
Cleavage of model substrates by archaeal RNase P: role of protein cofactors in cleavage-site selection
RNase P is a catalytic ribonucleoprotein primarily involved in tRNA biogenesis. Archaeal RNase P comprises a catalytic RNase P RNA (RPR) and at least four protein cofactors (RPPs), which function as two binary complexes (POP5•RPP30 and RPP21• RPP29). Exploiting the ability to assemble a functional Pyrococcus furiosus (Pfu) RNase P in vitro, we examined the role of RPPs in influencing substrate ...
متن کاملAn active precursor in assembly of yeast nuclear ribonuclease P.
The RNA-protein subunit assembly of nuclear RNase P was investigated by specific isolation and characterization of the precursor and mature forms of RNase P using an RNA affinity ligand. Pre-RNase P was as active in pre-tRNA cleavage as mature RNase P, although it contained only seven of the nine proteins found in mature RNase P. Pop3p and Rpr2p were not required for maturation of the RPR1 RNA ...
متن کاملBinding and cleavage of unstructured RNA by nuclear RNase P.
Ribonuclease P (RNase P) is an essential endoribonuclease for which the best-characterized function is processing the 5' leader of pre-tRNAs. Compared to bacterial RNase P, which contains a single small protein subunit and a large catalytic RNA subunit, eukaryotic nuclear RNase P is more complex, containing nine proteins and an RNA subunit in Saccharomyces cerevisiae. Consistent with this, nucl...
متن کاملModular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein.
The bacterial RNase P holoenzyme catalyzes the formation of the mature 5'-end of tRNAs and is composed of an RNA and a protein subunit. Among the two folding domains of the RNase P RNA, the catalytic domain (C-domain) contains the active site of this ribozyme. We investigated specific binding of the Bacillus subtilis C-domain with the B.subtilis RNase P protein and examined the catalytic activi...
متن کاملSubstrate recognition by ribonucleoprotein ribonuclease MRP.
The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces c...
متن کامل